
Neural Networks

Lecture 2
Two simple learning algorithms

• Each training case consists of an input vector x and a
desired output y (there may be multiple desired outputs
but we will ignore that for now)
– Regression: Desired output is a real number
– Classification: Desired output is a class label (1 or 0

is the simplest case).
• We start by choosing a model-class

– A model-class is a way of using some numerical
parameters, W, to map each input vector, x, into a
predicted output y

• Learning usually means adjusting the parameters to
reduce the discrepancy between the desired output on
each training case and the actual output produced by
the model.

Supervised Learning

>

Linear neurons

• The neuron has a real-
valued output which is a
weighted sum of its inputs

• The aim of learning is to
minimize the discrepancy
between the desired output
and the actual output
– How de we measure the

discrepancies?
– Do we update the weights

after every training case?
– Why don’t we solve it

analytically?

xwT
i

i
i xwy ˆ

Neuron’s estimate of
the desired output

input
vector

weight
vector

A motivating example

• Each day you get lunch at the cafeteria.
– Your diet consists of fish, chips, and beer.
– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure

out the price of each portion.
• Each meal price gives a linear constraint on the

prices of the portions:

beerbeerchipschipsfishfish wxwxwxprice 

Two ways to solve the equations

• The obvious approach is just to solve a set of
simultaneous linear equations, one per meal.

• But we want a method that could be
implemented in a neural network.

• The prices of the portions are like the weights in
of a linear neuron.

• We will start with guesses for the weights and
then adjust the guesses to give a better fit to the
prices given by the cashier.

)(,, beerchipsfish wwww

The cashier’s brain
Price of meal = 850

portions
of fish

portions
of chips

portions
of beer

150 50 100

2 5 3

Linear
neuron

• Residual error = 350
• The learning rule is:

• With a learning rate of
1/35, the weight changes
are +20, +50, +30

• This gives new weights of
70, 100, 80

• Notice that the weight for
chips got worse!

A model of the cashier’s brain
with arbitrary initial weights

)ˆ(yyxw ii  

Price of meal = 500

portions
of fish

portions
of chips

portions
of beer

50 50 50

2 5 3



Behaviour of the iterative learning procedure

• Do the updates to the weights always make them get
closer to their correct values? No!

• Does the online version of the learning procedure
eventually get the right answer? Yes, if the learning rate
gradually decreases in the appropriate way.

• How quickly do the weights converge to their correct
values? It can be very slow if two input dimensions are
highly correlated (e.g. ketchup and chips).

• Can the iterative procedure be generalized to much
more complicated, multi-layer, non-linear nets? YES!

Deriving the delta rule

• Define the error as the squared
residuals summed over all
training cases:

• Now differentiate to get error
derivatives for weights

• The batch delta rule changes
the weights in proportion to
their error derivatives summed
over all training cases

i
i

nn
n

ni

n n

n

i

n

i

n
n

n

w
Ew

yyx

y
E

w
y

w
E

yyE



























)ˆ(

ˆ
ˆ

)ˆ(

,

2
2
1

The error surface
• The error surface lies in a space with a

horizontal axis for each weight and one vertical
axis for the error.
– For a linear neuron, it is a quadratic bowl.
– Vertical cross-sections are parabolas.
– Horizontal cross-sections are ellipses.

E w1

w2

• Batch learning does
steepest descent on the
error surface

• Online learning zig-zags
around the direction of
steepest descent

w1

w2

w1

w2

Online versus batch learning

constraint from
training case 1

constraint from
training case 2

Adding biases

• A linear neuron is a more
flexible model if we
include a bias.

• We can avoid having to
figure out a separate
learning rule for the bias
by using a trick:
– A bias is exactly

equivalent to a weight
on an extra input line
that always has an
activity of 1.

21 wwb

i
i

iwxby ˆ

211 xx

Binary threshold neurons
• McCulloch-Pitts (1943)

– First compute a weighted sum of the inputs
from other neurons

– Then output a 1 if the weighted sum exceeds
the threshold.

y

i
i

iwxz 

z1 if

0 otherwise
y

z

1

0
threshold

The perceptron convergence procedure:
Training binary output neurons as classifiers

• Add an extra component with value 1 to each input vector.
The “bias” weight on this component is minus the
threshold. Now we can forget the threshold.

• Pick training cases using any policy that ensures that
every training case will keep getting picked
– If the output unit is correct, leave its weights alone.
– If the output unit incorrectly outputs a zero, add the

input vector to the weight vector.
– If the output unit incorrectly outputs a 1, subtract the

input vector from the weight vector.
• This is guaranteed to find a suitable set of weights if any

such set exists.

Weight space

• Imagine a space in which
each axis corresponds to a
weight.
– A point in this space is a

weight vector.
• Each training case defines

a plane.
– On one side of the plane

the output is wrong.
• To get all training cases

right we need to find a point
on the right side of all the
planes.

an input
vector with
correct
answer=1

bad
weights

good
weights

o
the origin

an input
vector with
correct
answer=0

Why the learning procedure works

• Consider the squared
distance between any
satisfactory weight vector
and the current weight
vector.
– Every time the

perceptron makes a
mistake, the learning
algorithm moves the
current weight vector
towards all satisfactory
weight vectors (unless it
crosses the constraint
plane).

• So consider “generously satisfactory”
weight vectors that lie within the
feasible cone by a margin at least as
great as the largest update.
– Every time the perceptron makes a

mistake, the squared distance to all
of these weight vectors is always
decreased by at least the squared
length of the smallest update vector.

What binary threshold neurons cannot do

• A binary threshold output unit
cannot even tell if two single bit
numbers are the same!
Same: (1,1)  1; (0,0)  1
Different: (1,0)  0; (0,1)  0

• The four input-output pairs
give four inequalities that are
impossible to satisfy:







21

21

,
0,

ww
ww

Data Space
(not weight space)

0,1

0,0 1,0

1,1

The positive and negative cases
cannot be separated by a plane

Scope of Research

• Effective Distance Generation Algorithms for
Supervised Learning

