Neural Networks

Lecture 2
Two simple learning algorithms

Supervised Learning

« Each training case consists of an input vector x and a
desired output y (there may be multiple desired outputs
but we will ignore that for now)

— Regression: Desired output is a real number
— Classification: Desired output is a class label (1 or O
IS the simplest case).
 We start by choosing a model-class

— A model-class is a way of using some numerical
parameters, W, to map each input vector, X, into a

predicted output y

 Learning usually means adjusting the parameters to
reduce the discrepancy between the desired output on
each training case and the actual output produced by

the model.

| Inear neurons

 The neuron has a real-
valued output which is a
weighted sum of its inputs

weight

vector

A 1.
J=> WX; =W X
t I
Input

Neuron’s estimate of vector

the desired output

 The aim of learning is to
minimize the discrepancy
between the desired output
and the actual output

— How de we measure the
discrepancies?

— Do we update the weights
after every training case?

— Why don’t we solve it
analytically?

A motivating example

e Each day you get lunch at the cafeteria.
— Your diet consists of fish, chips, and beer.
— You get several portions of each
 The cashier only tells you the total price of the meal

— After several days, you should be able to figure
out the price of each portion.

 Each meal price gives a linear constraint on the
prices of the portions:

PFICE = Xish Wish + Xchips Wehips T Xbeer Wheer

Two ways to solve the equations

The obvious approach is just to solve a set of
simultaneous linear equations, one per meal.

But we want a method that could be
Implemented in a neural network.

The prices of the portions are like the weights In
of a linear neuron.

W = (Wiigh Wehips Wheer)

We will start with guesses for the weights and
then adjust the guesses to give a better fit to the
prices given by the cashier.

The cashier’s brain

Price of meal = 850

Linear
neuron

150 50 00

2 5 3
portions portions portions
of fish of chips of beer

A model of the cashier’s brain
with arbitrary initial weights

Price of meal = 500 .

50 50 50

2 5 3 .

portions portions portions
of fish of chips of beer

Residual error = 350
The learning rule is:

AW, = ¢ X; (Y —Y)

With a learning rate & of
1/35, the weight changes
are +20, +50, +30

This gives new weights of
70, 100, 80

Notice that the weight for
chips got worse!

Behaviour of the iterative learning procedure

* Do the updates to the weights always make them get
closer to their correct values? No!

* Does the online version of the learning procedure
eventually get the right answer? Yes, if the learning rate
gradually decreases in the appropriate way.

 How quickly do the weights converge to their correct
values? It can be very slow if two input dimensions are
highly correlated (e.g. ketchup and chips).

e Can the iterative procedure be generalized to much
more complicated, multi-layer, non-linear nets? YES!

Deriving the delta rule

residuals summed over all

. 1 52
Define the error as the squared — E = Zi(y” -Yn)
training cases: !

e

Now dl_fferentlate _to get error l aWi - aWi ayn
derivatives for weights

The batch delta rule changes
the weights in proportion to
their error derivatives summed ok

o —_— AW, =—&——
over all training cases ' i

The error surface

 The error surface lies in a space with a

horizontal axis for each weight and one vertical
axis for the error.

— For a linear neuron, it is a quadratic bowl.
— Vertical cross-sections are parabolas.
— Horizontal cross-sections are ellipses.

E "

w2 —

—
—

e Batch learning does
steepest descent on the
error surface

wl

Online versus batch learning

w2

e Online learning zig-zags
around the direction of
steepest descent

constraint from

training case 1 \

wl

=

constraint from
training case 2 —

w2

Adding biases

flexible model if we
Include a bhias.

 We can avoid having to
figure out a separate

learning rule for the bias
by using a trick:
— A bias Is exactly
equivalent t Ight
comsenosie b w]
put line
that always has an 1
activity of 1. X1 X2

« A linear neuron is a more y=b+ Z X: Wi
i

Binary threshold neurons

e McCulloch-Pitts (1943)

— First compute a weighted sum of the inputs
from other neurons

— Then output a 1 if the weighted sum exceeds

the threshold.
7 = Z X W
i .
1if 2>6
= {120y
O otherwise

Z—>

threshold

The perceptron convergence procedure:
Training binary output neurons as classifiers

« Add an extra component with value 1 to each input vector.
The “bias” weight on this component is minus the
threshold. Now we can forget the threshold.

* Pick training cases using any policy that ensures that
every training case will keep getting picked

— If the output unit is correct, leave its weights alone.

— If the output unit incorrectly outputs a zero, add the
Input vector to the weight vector.

— If the output unit incorrectly outputs a 1, subtract the
Input vector from the weight vector.

e This is guaranteed to find a suitable set of weights if any
such set exists.

Weight space

* Imagine a space in which
each axis corresponds to a
weight.

— A point in this space Is a
weight vector.

e Each training case defines
a plane.

— On one side of the plane
the output is wrong.

 To get all training cases
right we need to find a point
on the right side of all the
planes.

1

an input
vector with
correct
answer=0

bad
weights

good <

weights

ight
wrong

an input
vector with
correct
answer=1

the origin

Why the learning procedure works

Consider the squared .
distance between any
satisfactory weight vector

and the current weight

vector.

— Every time the
perceptron makes a
mistake, the learning
algorithm moves the
current weight vector
towards all satisfactory
weight vectors (unless it
crosses the constraint
plane).

So consider “generously satisfactory”
weight vectors that lie within the
feasible cone by a margin at least as
great as the largest update.

— Every time the perceptron makes a
mistake, the squared distance to all
of these weight vectors is always
decreased by at least the squared
length of the smallest update vector.

What binary threshold neurons cannot do

e A binary threshold output unit Data Space
cannot even tell if two single bit (not weight space)
numbers are the same! 0.1 e 4.4l

Same: (1,1)> 1: (0,0) > 1
Different: (1,0) = 0; (0,1) 2> O

 The four input-output pairs %btp,
give four inequalities that are e Ulpyt
impossible to satisfy: Ylout S ~——_

W, +W, >0, 0=0 0,0 © ®10
w, <0, w, <6 The positive and negative cases

cannot be separated by a plane

Scope of Research

» Effective Distance Generation Algorithms for
Supervised Learning

