
Neural Networks

Lecture 2
Two simple learning algorithms



• Each training case consists of an input vector x and a 
desired output y (there may be multiple desired outputs 
but we will ignore that for now)
– Regression: Desired output is a real number
– Classification: Desired output is a class label (1 or 0 

is the simplest case). 
• We start by choosing a model-class

– A model-class is a way of using some numerical 
parameters,   W,  to map  each input vector, x, into a 
predicted output y

• Learning usually means adjusting the parameters to 
reduce the discrepancy between the desired output on 
each training case and the actual output produced by 
the model.

Supervised Learning
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Linear neurons

• The neuron has a real-
valued output which is a 
weighted sum of its inputs

• The aim of learning is to 
minimize the discrepancy 
between the desired output 
and the actual output
– How de we measure the 

discrepancies?
– Do we update the weights 

after every training case?
– Why don’t we solve it 

analytically?
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A motivating example

• Each day you get lunch at the cafeteria.
– Your diet consists of fish, chips, and beer.
– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure 

out the price of each portion.
• Each meal price gives a linear constraint on the 

prices of the portions:
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Two ways to solve the equations

• The obvious approach is just to solve a set of 
simultaneous linear equations, one per meal.

• But we want a method that could be 
implemented in a neural network.

• The prices of the portions are like the weights in 
of a linear neuron.

• We will start with guesses for the weights and 
then adjust the guesses to give a better fit to the 
prices given by the cashier.
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The cashier’s brain
Price of meal = 850

portions 
of fish

portions 
of chips

portions 
of beer

150         50              100

2                  5               3

Linear 
neuron



• Residual error = 350
• The learning rule is:

• With a learning rate      of 
1/35, the weight changes 
are +20, +50, +30

• This gives new weights of 
70, 100, 80

• Notice that the weight for 
chips got worse!

A model of the cashier’s brain
with arbitrary initial weights
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Price of meal = 500

portions 
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portions 
of chips

portions 
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Behaviour of the iterative learning procedure

• Do the updates to the weights always make them get 
closer to their correct values?  No!

• Does the online version of the learning procedure 
eventually get the right answer? Yes, if the learning rate 
gradually decreases in the appropriate way.

• How quickly do the weights converge to their correct 
values? It can be very slow if two input dimensions are 
highly correlated (e.g. ketchup and chips).

• Can the iterative procedure be generalized to much 
more complicated, multi-layer, non-linear nets? YES!



Deriving the delta rule

• Define the error as the squared 
residuals summed over all 
training cases:

• Now differentiate to get error 
derivatives for weights

• The batch delta rule changes 
the weights in proportion to 
their error derivatives summed 
over all training cases
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The error surface
• The error surface lies in a space with a 

horizontal axis for each weight and one vertical 
axis for the error. 
– For a linear neuron, it is a quadratic bowl. 
– Vertical cross-sections are parabolas. 
– Horizontal cross-sections are ellipses.
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• Batch learning does 
steepest descent on the 
error surface

• Online learning zig-zags 
around the direction of 
steepest descent
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training case 1

constraint from 
training case 2



Adding biases

• A linear neuron is a more 
flexible model if we 
include a bias.

• We can avoid having to 
figure out a separate 
learning rule for the bias 
by using a trick:
– A bias is exactly 

equivalent to a weight 
on an extra input line 
that always has an 
activity of 1.
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Binary threshold neurons
• McCulloch-Pitts (1943)

– First compute a weighted sum of the inputs 
from other neurons

– Then output a 1 if the weighted sum exceeds 
the threshold.
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The perceptron convergence procedure: 
Training binary output neurons as classifiers

• Add an extra component with value 1 to each input vector. 
The “bias” weight on this component is minus the 
threshold. Now we can forget the threshold.

• Pick training cases using any policy that ensures that 
every training case will keep getting picked
– If the output unit is correct, leave its weights alone.
– If the output unit incorrectly outputs a zero, add the 

input vector to the weight vector.
– If the output unit incorrectly outputs a 1, subtract the 

input vector from the weight  vector.
• This is guaranteed to find a suitable set of weights if any 

such set exists.



Weight space

• Imagine a space in which 
each axis corresponds to a 
weight.
– A point in this space is a 

weight vector.
• Each training case defines 

a plane. 
– On one side of the plane 

the output is wrong.
• To get all training cases 

right we need to find a point 
on the right side of all the 
planes.

an input 
vector with 
correct 
answer=1

bad
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good
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an input 
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Why the learning procedure works

• Consider the squared 
distance between any 
satisfactory weight vector 
and the current weight 
vector.
– Every time the 

perceptron makes a 
mistake, the learning 
algorithm moves the 
current weight vector 
towards all satisfactory 
weight vectors (unless it 
crosses the constraint 
plane).

• So consider “generously satisfactory” 
weight vectors that lie within the 
feasible cone by a margin at least as 
great as the largest update.
– Every time the perceptron makes a 

mistake, the squared distance to all 
of these weight vectors is always 
decreased by at least the squared 
length of the smallest update vector.



What binary threshold neurons cannot do

• A binary threshold output unit 
cannot even tell if two single bit 
numbers are the same!
Same:     (1,1)  1;  (0,0)  1  
Different: (1,0)  0;  (0,1)  0

• The four input-output pairs  
give four inequalities that are 
impossible to satisfy:
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(not weight space)
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The positive and negative cases
cannot be separated by a plane



Scope of Research

• Effective Distance Generation Algorithms for 
Supervised Learning


